(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0, XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Rewrite Strategy: FULL

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

from(X) → cons(X, from(s(X)))
after(0', XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

S is empty.
Rewrite Strategy: FULL

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

TRS:
Rules:
from(X) → cons(X, from(s(X)))
after(0', XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Types:
from :: s:0' → cons
cons :: s:0' → cons → cons
s :: s:0' → s:0'
after :: s:0' → cons → cons
0' :: s:0'
hole_cons1_0 :: cons
hole_s:0'2_0 :: s:0'
gen_cons3_0 :: Nat → cons
gen_s:0'4_0 :: Nat → s:0'

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
from, after

(6) Obligation:

TRS:
Rules:
from(X) → cons(X, from(s(X)))
after(0', XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Types:
from :: s:0' → cons
cons :: s:0' → cons → cons
s :: s:0' → s:0'
after :: s:0' → cons → cons
0' :: s:0'
hole_cons1_0 :: cons
hole_s:0'2_0 :: s:0'
gen_cons3_0 :: Nat → cons
gen_s:0'4_0 :: Nat → s:0'

Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
from, after

(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol from.

(8) Obligation:

TRS:
Rules:
from(X) → cons(X, from(s(X)))
after(0', XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Types:
from :: s:0' → cons
cons :: s:0' → cons → cons
s :: s:0' → s:0'
after :: s:0' → cons → cons
0' :: s:0'
hole_cons1_0 :: cons
hole_s:0'2_0 :: s:0'
gen_cons3_0 :: Nat → cons
gen_s:0'4_0 :: Nat → s:0'

Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

The following defined symbols remain to be analysed:
after

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
after(gen_s:0'4_0(n57_0), gen_cons3_0(n57_0)) → gen_cons3_0(0), rt ∈ Ω(1 + n570)

Induction Base:
after(gen_s:0'4_0(0), gen_cons3_0(0)) →RΩ(1)
gen_cons3_0(0)

Induction Step:
after(gen_s:0'4_0(+(n57_0, 1)), gen_cons3_0(+(n57_0, 1))) →RΩ(1)
after(gen_s:0'4_0(n57_0), gen_cons3_0(n57_0)) →IH
gen_cons3_0(0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
from(X) → cons(X, from(s(X)))
after(0', XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Types:
from :: s:0' → cons
cons :: s:0' → cons → cons
s :: s:0' → s:0'
after :: s:0' → cons → cons
0' :: s:0'
hole_cons1_0 :: cons
hole_s:0'2_0 :: s:0'
gen_cons3_0 :: Nat → cons
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
after(gen_s:0'4_0(n57_0), gen_cons3_0(n57_0)) → gen_cons3_0(0), rt ∈ Ω(1 + n570)

Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

(12) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
after(gen_s:0'4_0(n57_0), gen_cons3_0(n57_0)) → gen_cons3_0(0), rt ∈ Ω(1 + n570)

(13) BOUNDS(n^1, INF)

(14) Obligation:

TRS:
Rules:
from(X) → cons(X, from(s(X)))
after(0', XS) → XS
after(s(N), cons(X, XS)) → after(N, XS)

Types:
from :: s:0' → cons
cons :: s:0' → cons → cons
s :: s:0' → s:0'
after :: s:0' → cons → cons
0' :: s:0'
hole_cons1_0 :: cons
hole_s:0'2_0 :: s:0'
gen_cons3_0 :: Nat → cons
gen_s:0'4_0 :: Nat → s:0'

Lemmas:
after(gen_s:0'4_0(n57_0), gen_cons3_0(n57_0)) → gen_cons3_0(0), rt ∈ Ω(1 + n570)

Generator Equations:
gen_cons3_0(0) ⇔ hole_cons1_0
gen_cons3_0(+(x, 1)) ⇔ cons(0', gen_cons3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))

No more defined symbols left to analyse.

(15) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
after(gen_s:0'4_0(n57_0), gen_cons3_0(n57_0)) → gen_cons3_0(0), rt ∈ Ω(1 + n570)

(16) BOUNDS(n^1, INF)